Symbol Mw
Atomic number 126
Pronunciation /'maks•wel•ē•(y)üm/
Named after James Clerk Maxwell
Name in Saurian Mupnoccaim (Mn)
Systematic name Unbihexium (Ubh)
Location on the periodic table
Period 8
Family Maxwellium family
Series Lavoiside series
Coordinate 5g6
Element below Maxwellium Chandrasekharium
Element left of Maxwellium Daltonium
Element right of Maxwellium Planckium
Atomic properties
Subatomic particles 460
Atomic mass 336.7883 u, 559.2500 yg
Atomic radius 167 pm, 1.67 Å
Covalent radius 182 pm, 1.82 Å
van der Waals radius 197 pm, 1.97 Å
Nuclear properties
Nucleons 334 (126 p+, 208 no)
Nuclear ratio 1.65
Nuclear radius 8.29 fm
Half-life 117.13 Gy
Decay mode Beta decay
Decay product 334Pk
Electronic properties
Electron notation 126-8-23
Electron configuration [Og] 5g2 6f3 8s2 8p1
Electrons per shell 2, 8, 18, 32, 34, 20, 9, 3
Oxidation states +1, +2, +4, +6, +7, +8
(a strongly basic oxide)
Electronegativity 0.99
First ionization energy 374.0 kJ/mol, 3.877 eV
Electron affinity 55.7 kJ/mol, 0.577 eV
Physical properties
Bulk properties
Molar mass 336.788 g/mol
Molar volume 23.593 cm3/mol
Density 14.275 g/cm3
Atomic number density 1.79 × 1021 g−1
2.55 × 1022 cm−3
Average atomic separation 340 pm, 3.40 Å
Speed of sound 678 m/s
Magnetic ordering Paramagnetic
Crystal structure Base-centered orthorhombic
Color Gray
Phase Solid
Thermal properties
Melting point 935.37 K, 1683.67°R
662.22°C, 1224.00°F
Boiling point 1401.43 K, 2522.58°R
1128.28°C, 2062.91°F
Liquid range 466.06 K, 838.91°R
Liquid ratio 1.50
Triple point 935.27 K, 1683.49°R
662.12°C, 1223.82°F
@ 192.53 Pa, 1.4441 torr
Critical point 2955.14 K, 5319.26°R
2681.99°C, 4859.59°F
@ 57.4017 MPa, 566.512 atm
Heat of fusion 10.038 kJ/mol
Heat of vaporization 138.960 kJ/mol
Heat capacity 0.08053 J/(g•K), 0.14496 J/(g•°R)
27.123 J/(mol•K), 48.821 J/(mol•°R)
Abundance in the universe
By mass Relative: 6.80 × 10−16
Absolute: 2.28 × 1037 kg
By atom 5.30 × 10−17

Maxwellium is the provisional non-systematic name of an undiscovered element with the symbol Mw and atomic number 126. Maxwellium was named in honor of James Clerk Maxwell (1831–1879), who first developed the electromagnetic theory. This element is known in the scientific literature as unbihexium (Ubh) or simply element 126. Maxwellium is the sixth element of the lavoiside series and located in the periodic table coordinate 5g6.

Atomic properties Edit

Maxwellium has 126 protons, hence its atomic number, and 208 neutrons that make up the nucleus. Its atomic mass, summing up all of the subatomic particles within the atom, including electrons, is 336.7883 daltons.

There are 126 electrons in eight energy levels and 24 orbitals. Due to relativistic effects, maxwellium has three electrons in the 6f orbital and one in the 8p orbital. This leaves 5g orbital with only two electrons instead of six as if the Madelung rule is followed.

Its atomic radius is 167 pm, slightly bigger than sodium and calcium atoms.

Isotopes Edit

Maxwellium, like every other trans-lead element, has no stable isotope. However, the most stable isotope, 334Mw, is extremely long. Its half-life is 117 billion years, roughly 8½ times longer than the current age of the universe, beta decaying to 334Pk. Since maxwellium has the atomic number 126, it is a magic number and would have closed proton shell. Maxwellium is the peak member of the island of stability.

There are other long-lived isotope of maxwellium. 331Mw has a half-life of 83 billion years, alpha decaying to 327Ts, 335Mw has a half-life of 304 million years, beta decaying to 335Pk, 332Mw has a half-life of 23 million years, alpha decaying to 328Ts, and 336Mw has a half-life of 206 thousand years, beta decaying to 336Pk. All of the remaining isotopes have half-lives less than 100 thousand years and majority of these have half-lives less than 200 years.

There are numerous metastable isomers, including 337m4Mw, 333m3Mw, 334mMw, 331m2Mw, and 330mMw. The longest-lived isomer is 333m3Mw with a half-life of 80 days, transforming to 333Mw by emitting gamma rays.

Chemical properties and compounds Edit

Like other lavoisoids, maxwellium is quite reactive. Its first ionization energy is 3.88 eV, lowest among the lavoisoids. This lowest state translates to its highest chemical reactivity. Low ionization energy means that this element can easily give up electrons during chemical reactions and can most easily form hexavalent compounds, meaning maxwellium carries +6 oxistate in those compounds.

In elemental form, maxwellium would react violently with mineral acids, especially hydrochloric acid, to form ionic salts. It would tarnish in the air very rapidly due to the formation of oxide, but in the finely divided form, it would spontaneously burn.

Maxwellium can form a variety of compounds when this element reacts with air, water, acids, halogens, and other nonmetals. Maxwellium(VI) oxide (MwO3) is a gray oxide formed when this metal exposes to air for five to ten minutes. Maxwellium(VIII) fluoride (MwF8) is a dark green salt formed when this metal reacts with fluorides of less reactive metal or with hydrofluoric acid. Maxwellium(IV) sulfate (Mw(SO4)2) is a light yellow powder with the melting point close to the room temperature at 42°C. MwCl6 is a white crystalline salt formed when the metal reacts with hydrochloric acid or with chlorides of less reactive metal. Maxwellium(IV) cyanide (Mw(CN)4) is an orange toxic powder.

Physical properties Edit

Maxwellium is a paramagnetic gray metal at room temperature. Maxwellium has a base-centered orthorhombic crystal lattice, meaning the atoms form cubes with different lengths, with an atom in the top and bottom faces. The average separation between maxwellium atoms is 3.40 Å. The sound would travel through this metal at 678 m/s, which is very slow for a metal but twice the speed through the air. Maxwellium's density is 1414 g/cm3, molar volume of 2335 cubic centimeters, and molar mass of 33645 grams.

Maxwellium is a liquid from 662°C to 1528°C (1224°F to 2783°F). Varying pressures cause substances including this one to melt and boil at different temperatures, a reason why it has properties like triple point and critical point.

Occurrence Edit

It is certain that maxwellium is virtually nonexistent on Earth, but giving its extremely long half-life of 117 billion years, maxwellium should exist primordially on Earth. Naturally, this element can only be produced in tiny amounts by biggest supernovae or colliding neutron stars due to the requirement of a tremendous amount of energy. Maxwellium can be produced mainly by fusing nickel into californium through r-process. It is theoretically the heaviest element possible to be produced in supernovae. Additionally, maxwellium can also be produced in much larger quantities by advanced technological civilizations, making artificial maxwellium more abundant than natural maxwellium in the universe. An estimated abundance of maxwellium in the universe by mass is 6.80 × 10−16, which amounts to 2.28 × 1037 kilograms.

Synthesis Edit

To synthesize most stable isotopes of maxwellium, nuclei of a couple lighter elements must be fused together, and right amount of neutrons must be seeded. This operation would be very difficult since it requires a great deal of energy, thus its cross section would be so limited. Here's couple of example equations in the synthesis of the most stable isotope, 334Mw.

Au + 107
Ag + 30 1
n → 334
Np + 74
Ge + 23 1
n → 334

There had been an attempt to synthesize maxwellium without enriching it with neutrons. In the near future, maxwellium shall successfully be made here on Earth.

Imaginative applications Edit

Because maxwellium is only slightly radioactive with an extremely long half-life of 117 billion years, this metal can be used in a variety of applications. It can alloy with other metals to improve strength and resist corrosion. This element can also be used to absorb neutrons in nuclear reactors without causing fission.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Nw G Ls Dm M T Dt Mw Pk By Bz Fn Dw To Pl Ah My Cv Fy Chd A Ed Ab Bu Du Sh Hb Da Bo Fa Av So Hr Wt Dr Le Vh Hk Ke Ap Vw Hu Fh Ma Kp Gb Bc Hi Kf Bn J Hm Bs Rs
9 Me Jf Ul Gr Mr Arm Hy Ch Do Ib Eg Af Bhz Me Zm Qtr Bhr Cy Gt Lp Pi Ix El Sv Sk Abr Ea Sp Wg Sl Jo Bl Et Ci Ht Bp Ud It Yh Jp Ha Vi Gk L Ko Ja Ph Gv Dc Bm Jf Km Of Lb
10 Io Ly Chy Dnk Hng Le Aus Et Tg Ck Mv Lg Uk Fp Gp Mq Mts Gm Pal Pc Jd Ie Ym Om Sd Ld Cy Mlt Tv Fj Wl So Kb Mh Tk Nr Sol Cld Vt Tr Id Em Mu Sy My Cor Mur Ber Trd Ged Svc Agl Dg Su Sh
11 Flk Sog Asc Trs Bsi Tks Bvg Uvg Fof Nku Atf Chd