PlanetStar Wiki
Date December 19, 2012
Discoverers Tuomi et al.
Detection method Radial velocity (HARPS)
Site La Silla Observatory
Name & designations
Pronunciation /'hā•dēs/
Adjective Hadian
Planet numbers P848, Tau Ceti P3,
Cetus P32, Hippocampus P100,
2012 P159, 2012 Cet-10,
2012 Hip-17
Star designations 52 Ceti d, BF 1315 d,
PH 629 d, Pi Hippocampi d,
376 Hippocampi d, P22 Ceti d,
P73 Hippocampi d, HD 10700 d,
HIP 8102 d, HR 509 d,
Gliese 71 d, SAO 147986 d
System Tau Ceti
Constellation Cetus
Caelregio Hippocampus
Right ascension 01h 44m 04.08s (26.017 01°)
Declination −15° 56' 14.9" (−15.937 48°)
Distance 3.650 pc (11.905 ly)
Orbital characteristics
Semimajor axis 0.373 238 AU (55.835 6 Gm)
Periastron 0.344 447 AU (51.528 5 Gm)
Apastron 0.402 030 AU (60.142 8 Gm)
Eccentricity 0.077 140 0
Orbital circumference 2.342 57 AU (350.443 9 Gm)
Orbital area 0.436 34 AU² (9 765.1 Gm²)
Orbital period 94.109 634 d (0.257 658 14 yr)
Avg. velocity 43.246 km/s (9.092 AU/yr)
Max. velocity 44.883 km/s (11.224 AU/yr)
Min. velocity 41.544 km/s (6.273 AU/yr)
Direction of orbit
relative to star's rotation
Inclination 73.283° to ecliptic
−1.752° to star's equator
2.475° to invariable plane
Argument of periastron 227.696°
Longitude of ascending node 309.590°
Longitude of periastron 177.285°
Angular separation 102.251 mas
Observing the parent star
Mean angular star size 1.137 05° (68.223')
Max. angular star size 1.232 10° (73.926')
Min. angular star size 1.055 62° (63.337')
Mean star magnitude −28.028
Max. star magnitude −28.202
Min. star magnitude −27.867
Bulk characteristics
Mean radius 1.431 3 R (9.119 Mm)
Equatorial radius 1.430 0 E (9.121 Mm)
Polar radius 1.433 9 P (9.115 Mm)
Mean circumference 57.296 Mm
Equatorial circumference 57.308 Mm
Polar circumference 57.273 Mm
Surface area 2.048 7 S (1 045.0 Mm²)
Volume 2.932 3 V (3 176.3 Mm³)
Flattening 0.000 61 (1:1 635)
Angular diameter 33.399 μas
Mass 3.655 7 M
Reciprocal mass
relative to star
71 330
Density 6.876 g/cm³
Gravitational influence
Surface gravity 1.784 g (17.50 m/s²)
Weight on Hades
(150 lb on Earth)
268 lb
Standard gravitational parameter 1.457 × 106 km³/s²
Escape velocity 17.88 km/s
Hill radius 2.331 LD (0.896 0 Gm)
Roche limit
(3 g/cm3 satellite)
0.039 41 LD (15.148 Mm)
Stationary orbit 2.424 09 LD (931.817 Mm)
Stationary velocity 1.246 km/s (0.280 LD/d)
Rotation characteristics
Rotation period 1 317.534 9 h (54.897 287 d)
Rotation velocity 43 kph (0.27°/h)
Direction of rotation
relative to orbit
Axial tilt 1.833°
Longitude of vernal equinox 208.148°
North pole right ascension 13h 08m 50s (197.208°)
North pole declination −07° 00' 56" (−7.015°)
North polar constellation Virgo
North polar caelregio Noctua
South pole right ascension 13h 08m 50s (17.208°)
South pole declination +07° 00' 56" (+7.015°)
South polar constellation Pisces
South polar caelregio Hippocampus
Thermal characteristics
Surface temperature 347 K (74°C, 165°F, 625°R)
Mean irradiance 4 513 W/m² (3.300 I)
Irradiance at periastron 5 299 W/m² (3.875 I)
Irradiance at apastron 3 890 W/m² (2.844 I)
Albedo 0.589 (bond), 0.520 (geom.)
Scale height 4.69 km
Volume 1.190 ae (4.98 Mm³)
Total mass 0.193 atmu (0.990 Eg)
Surface pressure 2.173 atm (220.2 kPa,
31.94 psi)
Surface density 0.199 g/m³
Molar mass 36.98 g/mol
Composition 38.565% Ar, 18.877% N2,
18.635% SO2, 12.533% He,
7.638% O2, 2.730% CO2,
0.352% NH3, 0.287% H2O,
0.251% CO, 766 ppm H2,
313 ppm CH4, 176 ppm Kr,
61.0 ppm Ne, 1.76 ppm HCN
Dipole strength 0.438 nT (4.38 μG)
Magnetic moment 5.98 × 1013 T•m³
Dipole tilt 2.23°
Satellite system
Number of moons 1
Number of rings 0

Hades (Tau Ceti d, P848) is the third exoplanet in orbit around Tau Ceti, a star just 12 light-years away. It is one of the five planets discovered on December 19, 2012. This planet is a super-Earth which orbits in a Mercury-like distance from the parent star. It is also a desert planet with a year lasting 94 days.

Hades was named after the Greek god of the underworld, Greek equivalent of the Roman god Pluto.

Discovery and chronology[]

Hades was discovered on December 19, 2012, together with four other planets in this system. This discovery was made by carefully watching the wobble of Tau Ceti caused by gravitational tug of planets. It was successfully done using high resolution HARPS spectrograph mounted on the 3.6-meter telescope in La Silla Observatory located in the Atacama Desert in Chile. Hades became the 840th exoplanet discovered since 1992 and is the 159th planet discovered in 2012. It is also the 32nd planet discovered in Cetus and 100th in Hippocampus.

Orbit and rotation[]


Hades orbits in the similar distance from the star as Mercury is from the Sun, thus the length of its year is similar to Mercury as well. Hades orbits at a semimajor axis of 55.84 gigameters and distance varies by 15% throughout its orbit. The length of planet's year is 94.1 days, which is just over three months and one quarter of a year on Earth. Hades moves at an average speed of 43.25 km/s, 45% faster than the orbital speed of Earth. Hades moves faster when it is closer to the star and slower when it is farther away. As seen from Earth, Hades maximum apparent separation from the parent star is about one-tenth of an arcsecond, which is very wide for the semimajor axis because the planet and the star is so near to us.


Hades is locked into a 12:7 tide ratio, meaning one complete rotation is seven twelves of its orbital period. It takes 54.90 days or nearly eight weeks to complete one spin, similar to the rotation of Mercury (58.65 days). Long rotation periods mean it rotates slowly. In this case, the rotational velocity is just 43 kph (27 mph), just a bit faster than bike pedaling. The rotation rate is so slow that cars driving on a side street can outrun the apparent movement of the sky, thereby reversing the natural movement. For example, when the star rises and want to drive away from it, then the star would re-set and plunder back to night, whereas if the star sets and drive toward it, then the star would re-rise and relight the sky. The rotational axis tilts 1.8° to the orbital plane and longitude of vernal equinox is 208.1° with 0° denoting First Point of Aries and going eastward. When combining axial tilt, longitude of vernal equinox, inclination to line of sight, and coordinates seen from Earth would imply that the planet's north pole points to the constellation Virgo at right ascension 13h 09m and declination −07° 01' while the south pole points to the constellation Pisces at right ascension 01h 09m and declination +07° 01'.

Parent star observation and irradiance[]

As seen from the surface of Hades, the parent star would appear brighter than the Sun as seen from Earth because the planet orbits much closer according to the law of inverse proportion. The parent star would have a magnitude of −28.03 compared to −26.74 for Sun as seen from Earth. Sun appearing brighter usually means it is bigger. In this case, the angular diameter of the star is 1.14°, compared to about 0.5° as the angular diameter of the Sun as viewed from our homeworld.

Since the planet orbits nearly three times closer, irradiance would assume to be more than 8 times greater, but it should be noted that its parent star is less luminous than our Sun. Hades receives 3.3 times more insolation than Earth receives from our own star.

Structure and composition[]

Mass and size[]

Hades' mean diameter is 18.24 megameters or 1.43 times Earth. From its size, Hades has a surface area just over two times greater and volume nearly 3 times greater than Earth's. It masses 3⅔ times greater than Earth's, classifying this as super-Earth since the mass is between 2 and 10 Earth masses. This results in the density of 6.9 g/cm³, denser than Earth and other solar system planets.

Gravitational influence[]

Hades' surface gravity is 1.78 g, with 1 g is the surface gravity of Earth. Since 1 g acceleration is 9.8 m/s², then 1.78 g acceleration would 17.5 m/s². The planet's gravity influence the space in the vicinity of the planet, keeping any of its possible moons in orbit. This vicinity is called its hill sphere with outer limit being equal in gravitational influence from planet and star, which is located 896 Mm or 98.2 planetary radii from the planet's center. Distance from the planet where an orbiting object has the same orbital period as the planet's rotation is just beyond the hill sphere and thus this orbit is not possible for long until it settles into the orbit around the star. If the planet's rotation is a bit faster, then such an orbit would be stable as it would lie within the hill sphere.


Like other terrestrial planets, Hades underwent differentiation, an event in which denser materials sink to form the core. The planet's core is made of iron and nickel with small amount of sulfur. Surrounding the core is mantle, where rocks are semisolid or molten and above it is the crust where the planet's surface lies at the top.


Hades' surface is mostly desert, but there are prominent terrains like mountains, canyons, ridges, volcanoes, and others. Because of the planet's surface feature, Hades is a desert planet.


The most common gas in the Hadian atmosphere is argon, at 38.6%, followed by nitrogen at 18.9%, sulfur dioxide making up 18.6%, helium at 12.5%, oxygen making up 7.6%, and carbon dioxide at 2.7%. There are other gases making up less than 1% of the atmosphere by volume, the most abundant such gas is ammonia, making up 0.35%, with water vapor (0.29%) and carbon monoxide (0.25%) close behind. The atmospheric molar mass, based on their molecular weight of gases and their proportion, is about 37 g/mol.

Hades' atmospheric pressure is more than twice that of Earth's but it has total mass just 15 that of Earth's. Hades' atmosphere making up about five cubic megameters, nearly 20% the Earth's atmospheric volume.

Magnetic field[]

The planet's magnetic field strength is 4.38 μG, which is weak due to its slow rotation.

Moons and rings[]

Hades has the only moon, but there were three moons in the past. The only moon is small, whose diameter is 153 km and orbits at 0.889 lunar distances from the planet. Two other moons were smaller and orbit beyond the only moon, 23 km and 29 km in order from the planet. Both moons escaped the planet's hill sphere as high eccentricities spend some of their time beyond the hill sphere during the orbit 3.1 and 2.7 billion years ago, respectively. The escaped moons are now asteroids.

Future studies[]

Hades poses a challenge since it does not transit its star. An alternative is to observe reflected light, which is difficult as it only been done for Jupiter-size planets. Future generations of telescopes can pick up reflected light from Hades and study its atmosphere as well as physical characteristics such as its actual mass and size. In addition to reflected light, this planet can be studied using direct imaging, which is very difficult given that planet orbits close to the glare of its star and is small, though future generations of technologies can make it whole lot easier. Direct imaging can be used to what planet appears like as well as if moons actually exist. Looking for signatures of volcanism can be done using reflected light or direct imaging.

Related links[]